Product: TIBCO Spotfire®
How to create contour lines on a map chart.
How to create a more detailed map chart using the contourLines() function in TERR.
Attached (Filename: ContourLines.zip) is an example implementation of the contourLines() function. It includes Spotfire file "TERR contourLines sample.dxp", the sample source data file, TERR script file, as well as a screen shot of the final image.
Here is the data function:
# ===============================================================
# Data function [TERR] Contour Lines
geospatialPredictTimeStamp = "Thu Aug 28 17:45:08 2014"
# Inputs
# x = numeric column (x coordinate) Real([DataTable].[${xcolumn}])
# y = numeric column (y coordinate) Real([DataTable].[${ycolumn}])
# z = numeric column (value to interpolate) Real([DataTable].[${zcolumn}])
# Optional inputs
# smooth.scale = numeric scalar, controlling level of detail
# trimHull (0/1, controls whether to plot regions outside perimeter of points)
# clipToData (1) - truncate surface to original data limits?
# Output
# contourTable
#
TimeStamp = paste(date(),Sys.timezone())
datafun = '[TERR] Contour Lines'
tdir = 'C:/Demo' # place to store diagnostics if it exists (otherwise do nothing)
suppressWarnings(try(save(list=ls(), file=paste(tdir,'/ContourLines.in.RData',sep=''), RFormat=T )))
# remove(list=ls()); load( file = 'C:/Demo/ContourLines.in.RData' ); print(datafun); print(TimeStamp)
# x = runif(n=100, min=20, max=30); y = runif(n=100, min=20, max=30); z = runif(n=100, min=20, max=30)
# smooth.scale = 0.5; trimHull=1; clipToData=1
#-----------------------------------------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------
#------- Define function for clip contour by convex hull ---------------------------
InOut.contour.points = function(x.cont0, y.cont0, xref.vec, yref.vec){
# Peter Shaw
# Compares the set of x,y points (xref.vec,yref.vec) with the
# (non-closed) contour defined by (x.cont0,y.cont0), to evaluate whether
# the points are inside, or outside the contour. (The contour is first
# closed upon itself to form a continuous loop).
# Count the points.
N.cont = length(x.cont0)
N.ref = length(xref.vec)
# Close up the contours to create the working contour definitions.
# First and last points will be the same.
x.cont = c( x.cont0, x.cont0[1] )
y.cont = c( y.cont0, y.cont0[1] )
u = 1:N.cont
# Create pairs of vectors (vec1 and vec2) from reference points to
# movements along the contour (defining pie-shaped sections thus angles)
vec1.x = rep(1,N.ref) %o% x.cont[u] - xref.vec %o% rep(1,N.cont)
vec2.x = rep(1,N.ref) %o% x.cont[u+1] - xref.vec %o% rep(1,N.cont)
vec1.y = rep(1,N.ref) %o% y.cont[u] - yref.vec %o% rep(1,N.cont)
vec2.y = rep(1,N.ref) %o% y.cont[u+1] - yref.vec %o% rep(1,N.cont)
# Form vector cross product and dot products:
Vec1xVec2 = vec1.x * vec2.y - vec2.x * vec1.y
Vec1dVec2 = vec1.x * vec2.x + vec1.y * vec2.y
# 4-quadrant atan (angles may be > 90 degrees)
Ang = atan2( Vec1xVec2, Vec1dVec2 )
# Form angle sums. These should be 0 or +/-1 to roundoff.
# Sign tells which direction around you went. May be useful
angle.sums = rowSums(Ang) / (2 * pi)
# Round these to a reasonable roundoff and take abs
return( round( abs( angle.sums ) * 1000 ) / 1000 )
}
#-----------------------------------------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------
if(is.null(smooth.scale)) smooth.scale = 0.5
if(is.null(trimHull)) trimHull = 1
if(is.null(clipToData)) clipToData = 1
# ------------ Make null objects -------------------
contourTable = data.frame(
segment = character(0),
level = character(0),
x = numeric(0),
y = numeric(0),
z = numeric(0),
order = numeric(0),
stringsAsFactors = F
)
library(RinR)
errorCondition = FALSE
if( length(x)==0 | length(y)==0 | length(z)==0 ) errorCondition=TRUE
if( !errorCondition ) {
#xydata.pred.in = data.frame( ID=ID, x=x, y=y, z.orig=z, stringsAsFactors=F ) # for prediction.
#bad = is.na(x) | is.na(x)
#xydata.pred.in = xydata.pred.in[ !bad, ]
xyzdata = data.frame( x=x, y=y, z=z )
bad = is.na(x) | is.na(x) | is.na(z)
xyzdata = xyzdata[ !bad, ]
#xyzdata.lo = try(loess(z ~ x * y, data=xyzdata, span=smooth.scale, na.action=na.exclude))
xyzdata.lo = REvaluate(
expr = { try(loess(z~x*y, data=data, span=span, na.action=na.exclude)) },
data = list(data=xyzdata, span=smooth.scale)
)
if(class(xyzdata.lo)=='Error') errorCondition=TRUE #2nd way to get here
if(!errorCondition){
xvec = seq(from=min(x,na.rm=T), to=max(x,na.rm=T), length=200) #Lon.vec
yvec = seq(from=min(y,na.rm=T), to=max(y,na.rm=T), length=200) #Lat.vec
xyzdata.lo.pred = REvaluate(
expr = { predict( xyzdata.lo, newdata=expand.grid(x=xvec, y=yvec)) },
data = list(xyzdata.lo=xyzdata.lo, xvec=xvec, yvec=yvec)
)
x.mtx = xvec %o% rep(1,length(yvec))
y.mtx = rep(1, length(xvec)) %o% yvec
# calculate convex hull
points.chull = REvaluate(
expr = { chull(xyzdata$x, xyzdata$y) }, #calculate convex hull of data points
data = list(xyzdata=xyzdata)
)
if( trimHull==1 ) { # Possibly trim points:
mtx.inout.vec = InOut.contour.points(
x.cont0 = xyzdata$x[points.chull],
y.cont0 = xyzdata$y[points.chull],
xref.vec = as.numeric(x.mtx),
yref.vec = as.numeric(y.mtx)
)
xyzdata.lo.pred[ mtx.inout.vec==0 ] = NA
}
if( clipToData==1 ) { # Possibly limit surface to original data limits.
xyzdata.lo.pred = pmin(xyzdata.lo.pred,max(z,na.rm=T))
xyzdata.lo.pred = pmax(xyzdata.lo.pred,min(z,na.rm=T))
}
}
} # end of last if(!errorCondition)
if( !errorCondition ) { # break things up
# -------------------------------- contour table work -------------------------------------
# calculate convex hull
# points.chull = REvaluate(
# expr = {chull(x, y)}, #calculate convex hull of data points
# data = list(x=x, y=y)
# )
# x.cont0 = xyzdata$x[points.chull],
# y.cont0 = xyzdata$y[points.chull],
# Set up data frame with the chull
points.chull.closed = c(points.chull,points.chull[1])
x.chull = xyzdata$x[points.chull.closed]
y.chull = xyzdata$y[points.chull.closed]
N = length(points.chull.closed)
borderTable = data.frame(
segment = rep('border', N),
level = rep('border', N),
x = x.chull + 0.0001*runif(n=N, min = -1, max=1), #helps SF ordering
y = y.chull + 0.0001*runif(n=N, min = -1, max=1),
z = rep(NA, N),
stringsAsFactors = F
)
# Minor Contours
contourList = REvaluate(
expr = { contourLines(x=x, y=y, z=z, levels=levels) },
data = list(x=xvec, y=yvec, z=xyzdata.lo.pred, levels=pretty(xyzdata.lo.pred, 20))
)
if( length(contourList) > 0 ) {
contourTable.pure = do.call(rbind,
lapply(X=1:length(contourList),
FUN=function(iseg,contourList){
this.seg=contourList[[iseg]]
N=length(this.seg$x)
table.part = data.frame(
segment = rep( paste(this.seg$level, iseg, sep='-'), N ),
level = rep("Minor", N),
x = this.seg$x,
y = this.seg$y,
z = rep(this.seg$level, N),
stringsAsFactors = F
)
}, contourList = contourList
)
)
contourTable.minor = rbind(borderTable, contourTable.pure)
} else {
contourTable.minor = borderTable
}
# Major Contours
contourList = REvaluate(
expr = { contourLines(x=x, y=y, z=z, levels=levels) },
data = list(x=xvec, y=yvec, z=xyzdata.lo.pred, levels=pretty(xyzdata.lo.pred, 5))
)
if(length(contourList)>0){
contourTable.pure = do.call(rbind,
lapply(X=1:length(contourList),
FUN=function(iseg,contourList){
this.seg=contourList[[iseg]]
N=length(this.seg$x)
table.part = data.frame(
segment = rep( paste(this.seg$level,iseg, sep='-'), N),
level = rep("Major", N),
x = this.seg$x,
y = this.seg$y,
z = rep(this.seg$level, N),
stringsAsFactors = F
)
}, contourList = contourList
)
)
contourTable.pure$x = contourTable.pure$x + 0.0001*runif(nrow(contourTable.pure),min=-1,max=1)
contourTable.pure$y = contourTable.pure$y + 0.0001*runif(nrow(contourTable.pure),min=-1,max=1)
contourTable = rbind(contourTable.minor, contourTable.pure)
} else {
contourTable = contourTable.minor
}
contourTable$order = 1:nrow(contourTable)
} # end of errorCondition
# One last check: if incoming z is constant, no contours will be present.
# Spotfire doesn't like all-missings in the contourTable, so replace the NAs in the border with mean of z if present.
if(all(is.na(contourTable$z))) {
contourTable$z = mean(z,na.rm=T) # will be NaN if all of z is NA
}
# ===============================================================
Comments
0 comments
Article is closed for comments.